High Resolution, Large Deformation 3D Traction Force Microscopy
نویسندگان
چکیده
منابع مشابه
High Resolution, Large Deformation 3D Traction Force Microscopy
Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influ...
متن کاملHigh-resolution traction force microscopy.
Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental...
متن کامل3D Viscoelastic traction force microscopy.
Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, whi...
متن کاملTraction force microscopy on-chip: shear deformation of fibroblast cells.
We develop here a microfabrication compatible force measurement technique termed as ultrasoft polydimethylsiloxane-based traction force microscopy (UPTFM). This technique is devised for mapping the cellular traction forces imparted on the adhering substrate, so as to depict the physiological state of the cells surviving in the micro-confinement. We subsequently integrate the technique with a mi...
متن کاملHigh Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)
In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0090976